
Interactive RayTracing of Dynamic Scenes

Tomas Davidovic∗

Department of Computer Science and Engineering

Czech Technical University in Prague

Abstract

Raytracing of dynamic scenes requires not only fast ray

traversal, but also fast update of acceleration structures.

Fast ray traversal is usually achieved through traversing

several rays at once in a packet. Update of acceleration

structure can be done by gradually refitting the structure

or by rebuilding it from the scratch every frame. The latter

approach puts no requirements on amount or behavior of

objects in the scene.

In this paper we will describe a raytracing system that

combines fast packet traversal with Bounding Volume Hi-

erarchy rebuilt from scratch using approximated Surface

Area Heuristic. Vertex culling uses transient frustum in

each leaf to quickly eliminate potential intersections with

triangles lying strictly outside the frustum. This benefits

from large leaves and allows shallow acceleration struc-

ture that can be built exceptionally fast with no impact

on performance. We will show that combination of these

two methods does provide interactive rates even on today’s

desktop computers. We will also demonstrate the interac-

tive capabilities on fast relighting of scenes with moving

point lights.

Keywords: Ray Tracing, Bounding Volume Hierarchy,

Dynamic Scenes, Packet Traversal

1 Introduction

Raytracing at interactive frame rates can be roughly di-

vided into three distinct categories. Static scenes with

only camera and lights moving, dynamic scenes with con-

strains on objects movement and dynamic scenes without

any constrains. The first approach uses precomputed ac-

celeration structures of very high quality, but offers little

in the means of moving objects. Those are usually placed

outside the main acceleration structure and tested sepa-

rately. The second approach is achieved by refitting the ac-

celeration structure over existing geometry. This puts two

constrains on the scene. The number of triangles should

not change between frames and the triangles should not

move too severely. Too severe movements would rapidly

quality of the structure. However, even with a relatively

slow movement, if it is not contained in a small area, the

quality of the structure gradually degrades and has to be

∗davidt2@fel.cvut.cz

rebuilt eventually. We therefore consider the last option

to be best suited for highly interactive applications, such

as games. Games usually have geometry appearing and

disappearing, e.g., explosions, and geometry with high de-

gree of movement, e.g., projectiles and characters.

To put no constrains on geometry it is necessary to com-

pletely rebuild acceleration structure for every frame. The

most common acceleration structures are kD-trees [1] and

Bounding Volume Hierarchies (BVH) [4] using Surface

Area Heuristics (SAH) cost function to find the best par-

titioning. This produces very efficient acceleration struc-

tures, but as the cost function is evaluated for every pos-

sible split plane it take average O(N logN) time to build

them. We are however interested not in the pure ray traver-

sal performance, but in optimization of build plus traversal

time. It is therefore acceptable to build slightly worse ac-

celeration structure if the speed up of build time outweighs

the slowdown of traversal. We decided to use BVH ac-

celeration structure for two main reasons. First, BVH is

generally shallower than kD-tree and with fewer nodes to

build it is safe to assume that the build process will be

faster. Second, the BVH has exact upper bound 2N − 1

on the number of nodes and we can therefore completely

avoid costly memory allocations during build process. To

speed up the BVH build we use approximate SAH [3]

and evaluate only a limited number of split planes in each

node. We also aim for shallow data structure with fewer

nodes and large leaves to further lower the number of splits

plane evaluations performed.

Large leaves can seriously hamper performance if we

do not implement a very effective intersection routine, be-

cause number of computed ray-triangle intersections in-

creases significantly. We decided to use Vertex Culling

packet-triangle intersection routine [2] to answer this

problem. This method builds a transient frustum after

reaching a leaf and using several simple checks discards

triangles that are strictly separated from the packet and do

not have to be intersected.

We show that using combination of these techniques it

is possible to achieve interactive rates for moderately com-

plex scenes. In Chapter 2 we describe implementation

of approximate-SAH BVH, in Chapter 3 we add packet

traversal and in Chapter 4 provide description of Vertex

Culling and its various checks and provide summary of

effect of those checks on performance of the whole sys-

tem. In Chapter 5 we briefly describe necessary modifi-

cations aimed at using packet tracing for shadow rays and



offer methods application to interactive light positioning.

In Chapter 6 we sum our measured results and in Chapter 7

we conclude.

2 Fast BVH

Bounding Volume Hierarchies one of the two acceleration

structures used in raytracing. Unlike kD-tree, BVH par-

titions objects rather then the scene space. The two main

distinctions are that in BVH each object belongs to exactly

one leaf and that nodes of BVH can overlap. Each BVH

leaf therefore contains pointer to its triangles and an Axis

Aligned Bounding Box (AABB) of space its objects oc-

cupy. Each inner node contains pointers to its children and

also AABB of the space its children occupy.

Figure 1: Possible BVH splits. Courtesy of [4]

When splitting leaf’s triangles to create an inner node, it

is possible to partition the triangles into an arbitrary num-

ber of groups by virtually any key (Fig. 1). Testing all

O(Nk) possible divisions is infeasible, so the most com-

mon approach is to use a split plane perpendicular of one

of the world axis and divide triangles into two groups

based on whether they are to the left or to the right of the

split plane, very much like it is done in kD-tree build.

Position of the split plane is chosen based on Surface

Area Heuristic cost function:

Cost = 2CT +CI

(

SA(VL)

SA(V )
NL +

SA(VR)

SA(V )
NR

)

(1)

where CT is cost of traversal, CI cost of intersection, NL

and NR are number of triangles to the left, respectively

right, of the split plane and SA(V ), SA(VL) and SA(VR)
are surface area of the split node, and AABBs of triangles

to the left and right of the split plane respectively. To de-

termine whether a triangle is to the left or right of a split

plane we need to use only one of its points. Usually its

centroid is used.

2.1 Approximate SAH

Normal construction algorithm evaluates the cost function

in split planes going through each triangle’s centroid point.

This however leads to O(N logN) time at best. We use

an approximation introduces in [3]. For each node we

consider only a limited number of equidistant split planes

instead of considering all possibilities. We also consider

only split planes perpendicular to the longest AABB axis,

instead of considering all three directions. As only triangle

centroids are used for building the BVH, we use an AABB

over those centroids instead of AABB over the whole ob-

jects. This is mainly to avoid problem described on Fig. 2.

Figure 2: Object vs. centroid AABB

The equidistant split planes divide the node into several

bins. We then iterate over all triangles in the node and

add it to each respective bin. Each bin knows its num-

ber of triangles and AABB over all triangles contained in

it. After all triangles have been assigned into their bin we

perform two sweeps over the bins. First we go from left

to right, computing cost to the left of each respective split

plane. The second sweep goes in the opposite direction,

computing cost to the right of each split plane and eval-

uating the cost function. The cost function evaluates is

a simplified version of the aforementioned function. The

simplification consists of removing terms common for all

split planes i.e., the traversal cost, the intersection cost and

the node surface area, resulting in:

Cost = SA(VL)NL +SA(VR)NR (2)

Three common termination criteria are used to deter-

mine whether a node should be split any further. Minimal

number of triangles in a node, maximal depth of the BVH

and comparing cost of not splitting with the best cost of

splitting to determine whether the split can yield any im-

provement. We added a fourth termination criterion, min-

imal size of centroid AABB, to avoid problems with float

precision.

3 Packet traversal

Before we can start using Vertex Culling to efficiently

compute intersection between ray packet and triangles we

first need to traverse the packet through BVH into a leaf.

The ray packets have to fulfill one condition imposed by



the Vertex Culling algorithm. The rays have to have a com-

mon direction sign in at least one direction. If the packet

does not fulfill this condition it is split into individual rays

and the rays are traced separately.

Without a loss of generality we can assume that the rays

have the common direction sign in axis x. Further, when

speaking about near and far AABB planes, we will means

planes perpendicular to axis x and we will consider plane

to be near when it has a lower x coordinate than the other,

far, plane.

First we compute rays’ intersections with near and far

planes of the root scene AABB. We use those intersection

points to compute axis-aligned rectangles set by the ray

packet on the near and far planes. Then we connect cor-

responding corners of those rectangles by corner rays that

strictly define the packet. These corner rays are used to

quickly discard nodes that are completely missed by the

ray packet.

To avoid testing rays that have already missed higher

nodes in the traversal, we remember index of the first ray

that did intersect this node and ignore all rays with lower

indexes. Whenever a single ray from a packet hits a node,

the whole packet is taken down to the node and no further

tests are therefore necessary.

We perform several tests to determine whether a packet

intersects a node. First we test the first active ray against

a node. If the ray hits we immediately return with pos-

itive result. If the first active ray misses, we use corner

rays to compute axis-aligned rectangles on the node’s near

and far plane and determine whether both are strictly sep-

arated by one of the AABB’s other planes or not. If they

are strictly to one side of the node’s AABB, the node is

missed by all the packet’s rays and no further tests are nec-

essary (Fig. 3). The last test is to test all rays against the

AABB to determine whether any of the rays hits the node.

If any ray hits the intersection procedure returns immedi-

ately with positive result. The index of first active ray is

updated throughout the whole process. For closer descrip-

tion of the algorithms and tests used see [3].

Figure 3: Two of the possible results of packet-box sepa-

ration. Green - frustrum misses; Red - frustum intersects.

4 Vertex culling

When the packet is traced through BVH down to a leaf, it

is necessary to perform a fast packet-triangle intersection

test. We implement the methods described in [2], plus add

a test to eliminate rays that completely miss the leaf.

First we create a transient frustum in a manner similar

to the one used for packet traversal, but this time only from

the rays that actually do intersect the leaf. There are three

basic tests performed.

First, we test whether all three vertices creating the tri-

angle are strictly separated from the packet by one of its

boundary planes. If they are then no ray in-between those

planes can intersect the triangle and we can terminate the

result with a negative result (Fig. 4, left). Second, we in-

tersect the packet corner rays with the triangle; computing

barycentric coordinates u, v of the hitpoints. A ray misses

a triangle if it violates any of these three conditions:

0 ≤ u;0 ≤ v;u+ v ≤ 1 (3)

If all four rays miss because of violating the same condi-

tion it means that the rays are strictly separated from the

triangle by one of the triangle’s edges (4, right).

On the other hand, if all four rays do intersect the trian-

gle, we can skip barycentric coordinate check for all the

rays in a packet. We also remember the distances t to the

triangle and if another triangle is encountered that is also

intersected by all four corner rays, but lies behind the first

such triangle, it is skipped as no ray in the packet can reach

it through the first triangle.

Figure 4: Vertex separation (left) and Triangle edge sepa-

ration (right). Courtesy of [2]

The very last test, when all attempts to separate triangle

from a frustum fail, is to intersect all rays with the triangle.

We evaluate their distance to its plane and interpolate their

texture coordinates and shading normal for all rays, but

store them only for those that hit the triangle.

Here we have added another test. During the creation

of transient frustum we flag all rays as hitting/missing the

leaf completely. When in the SSE2 implementation of the

intersection routine we encounter a pack of four such rays

that all four completely miss the leaf, we skip any tests for

them.



5 Shading via ray packets

So far we have described only methods used to acceler-

ate primary rays. One option is to split the primary rays

and shade each individually. We however consider this ap-

proach to be inferior, as it ignores the fact that coherent

rays in a packet will often hit either the same triangle, or

triangles with same material. We therefore decided to ex-

ploit this coherence and employed the following three step

shading approach. We use a StoreInfoPacket structure that

for each ray in a packet contains the following informa-

tion:

• Hit point position

• Pointer to point’s material

• Normalised shading normal

• Direction to camera

• Specular coefficient

• Diffuse coefficient

• Shininess

In the first step we iterate through all rays and for all

rays that hit any object we compute hitpoint, direction to

viewer, normalize shading normal we have from packet-

triangle intersection method and set pointer to the mate-

rial. If the ray did not hit any objects we set the material

pointer to NULL. We will call such rays ”missing rays”,

as opposed to ”hitting rays.” We also initialize an array of

valid flags that marks as valid those rays that have yet to

be processed. This array is initially set to false for missing

rays, true for all others.

The second step sets the specular and diffuse coeffi-

cients and shininess for all rays. Using SSE we iterate

through all rays in the packet by packs of four rays. For

each valid ray in the packet we call its material’s shader.

The shader starts to operate on packet’s rays from the first

valid ray and for each valid ray that uses the same material

it computes coefficients, shininess and sets the valid flag

to false. The shader also operates on four rays at a time,

with the only exception being texture fetch which can only

done for individual rays. We therefore fetch textures only

for rays that explicitly do use this material, unlike the other

values that are computed for all rays and stored for those

using the material. If none of the four rays is valid and

uses the material we immediately skip to next four rays.

In this way we call each shader only once as it automat-

ically computes all required data for all rays that use the

same material. The shader can also compute any color that

is not dependent on direct lighting e.g., ambient color, in-

direct illumination etc.

We now have all the data required to compute shading

in a single structure, independent on the number and type

materials used. The last step is to iterate through all lights

compute direct lighting using for all rays. For the sake of

simplicity we always compute direct lighting for all rays,

but add the result to pixels color only for hitting rays. It is

obvious that this method requires all objects in the scene

to use the same shading model e.g., Phong shading in our

implementation.

It also is very straightforward to implement shadow rays

via packet tracing at this point. We set shadow ray origin

to the light’s position and each shadow ray points at its

respective primary ray’s hitpoint. However, care has to be

taken when there are missing primary rays. Those can have

any arbitrary hitpoint which could break coherence of the

shadow ray’s packet. To avoid this we set hitpoint of all

missing rays to the hitpoint of first hitting ray. This will

help us preserve coherence without any impact on correct-

ness of the result.

The described method of computing direct light pre-

sented up with an opportunity implement a simple algo-

rithm for moving lights with just minimal modifications.

We can store the aforementioned StoreHitPacket structure

for each packet of primary rays and use it to repeatedly

recompute direct light affecting each pixel. We use this

to subtract light’s contribution from the picture, move the

light and add the contribution from the light’s new posi-

tion. We further accelerate this process by keeping two

color buffers. The base buffer stores the picture with-

out the moved light’s contribution, the color buffer then

stores the picture including this light. This way we sub-

tract light’s contribution only when it is first selected as

the active moving light, increasing the frame rate by a fac-

tor of two.

6 Results

Our system consists of three separate algorithms and it is

virtually impossible to evaluate all combinations of all set-

tings in them. We have therefore decided to focus on set-

tings of each algorithm separately, using the best or most

neutral settings for the other two. In Chapter 6.1 we exam-

ine of approximate-SAH BVH algorithm, in Chapter 6.2

we evaluate effect of various Vertex Culling tests and in

chapter 6.3 we present results brought by our packet shad-

ing algorithm. For our tests we used Happy Buddha (1M

triangles), A10 (218k) and Sibenik’s Cathedral (80k) mod-

els. All measurements have been performed on Core 2

Duo @ 2.16GHz, 2GB RAM and GT6600 graphics card.

6.1 BVH results

In evaluating BVH settings we have focused on two main

parameters. The ratio of intersection and traversal cost in-

fluences size of leafs and number of triangles contained in

each leaf, the larger the ratio the smaller the leaves. For

single ray tracing this is usually beneficial, but in combi-

nation with vertex culling it should be possible to quickly

cull away triangles that are not intersected by the packet.



We first measured dependence of average number of tri-

angles on the ratio (Fig. 5) and also fps performance of

pure ray traversal (Fig. 6). It is obvious that with ratio

greater than 10 the cost termination is not used anymore

as the minimal number of triangles takes precedence. We

therefore assume that there will be no impact on perfor-

mance over the ratio 10. The traversal performance was

measured with packets of 16×16 with all vertex culling

tests enabled and gives us a basic insight into system’s

performance for static scenes. We see that the peak per-

formance is around ratio 1.0 with average 3.5 triangles per

leaf.

Figure 5: Average number of triangles per leaf

Figure 6: Frame rate of traversal only

Next we measured how the ratio affects performance

of raytracing when the BVH is rebuilt each frame. We

also included three different packet sizes. Too large pack-

ets should in theory have negative impact on performance,

as the vertex culling is most effective when the packet is

smaller than the leaf.

However, as is apparent from Figs. 7, 8 and 9 this is

not the case. The largest tested packets also give the best

performance. We address this unexpected result in Chap-

ter 6.2. We can also see that the best performance shifted

to ratio of 0.1 and average of 30 triangles per leaf. This

confirms our assumption that while smaller leaves are bet-

ter for pure raytracing performance, the lower build time

for larger leaves more than compensates for slightly slower

traversal. Because the ratio 0.1 is gives near to optimal

performance for all three diverse scenes we assume that it

is most suitable to be used as the universal ratio for our

system and use it for further measurements.

Figure 7: Happy Buddha build + trace frame rate (cost

ratio)

Figure 8: A10 build + trace frame rate (cost ratio)

Figure 9: Sibenik’s Cathedral build + trace frame rate (cost

ratio)

The second evaluated parameter is the number of split

planes necessary to produce BVH of adequate quality. We

use 21 − 1 to 210 − 1 split planes, meaning 21 to 210 bins

evaluated in each split. Two bins is BVH equal to spatial

median split with no cost function and the approximation

of SAH should improve with increase of number of bins

giving us BVH with higher build but lower traversal time.

We can see from Figs. 10, 11 and 12 that we get almost

constant tracing time with number of bins between 8 and

64. The most apparent improvement from the spatial me-



dian is in the Sibenik’s Cathedral scene. We contribute

this to the fact that this is the only scene in our test set

where the camera is actually inside the scene and a good

BVH can better eliminate geometry outside camera’s field

of view. The drop in build plus trace frame rate between

8 and 64 bins confirms our first impression that high num-

ber of bins brings no improvement to raytracing and only

increases the build cost. The most noticeable feature is the

very sharp drop of performance for 512 bins that is appar-

ent in all three scenes. The number of split planes grows

exponentially and each test always includes all split planes

used in the previous tests. It is therefore not possible that a

particularly good split plane position was omitted because

the split was considered in test with 256 bins and not in the

512 bin test. We suspect two possible reasons for this be-

havior. The first is that is only a heuristic estimation of the

cost function, not the actual cost function and it is possi-

ble that at 512 bins this estimation is particularly different

from the actual cost function. The second reason would

be an implementation error causing a serious glitch at this

number of bins.

Figure 10: Happy Buddha build + trace frame rate (bins)

Figure 11: A10 build + trace frame rate (bins)

We have therefore performed a more detailed measure-

ment (Fig. 13) for number of bins between 400 and 600.

Should the behaviour be caused by an implementation er-

ror, we would expect extremely sharp drop in performance

for some numbers of bins. However, it is apparent that the

performance degradation is gradual as the number of bins

approaches 512. We therefore assume that the reason be-

Figure 12: Sibenik’s Cathedral build + trace frame rate

(bins)

Figure 13: Frame rates for number of bins between 400

and 600

hind this is a particularly bad estimation of cost function

for all three models. We conclude that the optimal univer-

sal settings for further tests are:

• Intersection/traversal cost ratio: 0.1

• Packet size: 16×16

• Number of bins: 8

6.2 Vertex culling

Once we determined good settings for BVH build we

shifted our focus on effect of each particular vertex culling

test. Because the use BVH parameters are the same for

all measurements in this chapter we decided to measure

only the tracing performance. We also included two sets

for packet sizes 8×8 and 16×16 to determine effect of the

tests on large and medium sized packets. The Figs. 14

and 15 show the results. Please note that the results are

normalized, with vertex culling off used as 100% per-

formance. For comparative performance between packet

sizes see Figs. 7, 8 and 9.

We briefly sum up each test measured, for more detailed

descriptions please see Chapter 4:

N/A - No vertex culling, only SSE2 intersection



TE - Separating packet by triangle edges

BP - Separating triangle by packets planes

NF - TriEdge plus consider when all corner rays hit the

same triangle

AB - Flag and skip those rays that completely miss the

tested leaf.

Figure 14: Relative speedup of different vertex culling

tests, packets 8×8

Figure 15: Relative speedup of different vertex culling

tests, packets 16×16

We can see that the effect for both Happy Buddha and

A10 models is negligible. AABB test brings 5-10% frame

rate improvement for 8×8 packets and about 25% for

16×16 packets. The other tests have no or negative im-

pact on performance. We assume that even with 30 tri-

angles per leaf the triangles and subsequently the leaves

are too small compared to packet’s size to benefit from the

culling tests.

The AABB tests does improve performance, because it

does not try to cull triangles from packet but rather culls

rays that would be tested for intersection even when they

completely miss the leaf. This explains why the perfor-

mance increase is higher for larger packets as they contain

higher percentage of rays that benefit from skipping costly

ray-intersection test.

The situation is exact opposite for the Sibenik’s Cathe-

dral scene, showing that the efficiency of the whole

method is dependent on the character of displayed scene.

The Sibenik scene contains relatively few (76k) large tri-

angles and therefore most rays in a packet hit the same

leaf even for 16×16 packets. The AABB test offers no

improvement for 8×8 packets and gives only small per-

formance boost (15%) for 16×16 packets, confirming this

assumption.

However, the actual culling tests bring a significant im-

provement of the frame rate. When taken individually, the

culling by packets planes is the most effective test, im-

proving speed by 240% for large packets. Adding triangle

edge tests brings only 10% more, even though the test by

itself speeds raytracing by a factor of two. We can see

that a large number of triangles can be culled by either of

the tests. Adding NearFar test gives us yet another 10%,

bringing the total speedup to 260% for large packets. The

benefit for smaller packets is similar in composition, but

the improvement over no culling is always smaller than

for large packets. This is probably caused by initialization

overhead that is not sufficiently amortized in this scene.

We also see that the effect of AABB test can be almost di-

rectly added to speedup caused by culling tests, as it brings

another 10-15% for large packets and no improvement for

the small packets.

6.3 Packet shading

To evaluate the effect of our packet shading algorithm we

decided to measure tracing and shading performance with-

out BVH build time. The reasoning is the same as for

vertex culling measurement. All tested versions use the

same BVH setup, so the total build time is the same for all

test runs and can therefore be omitted. We also decided

to measure both 8×8 and 16×16 packet sizes. The results

are summed up on Fig. 16.

Figure 16: Comparison of Single Shading (SS), Packet

Shading (PS), Single Shading & Shadows (SS&S) and

Packet Shading & Shadows (PS&S) to frame rate of no

shading (N/A) for packets 8×8 (left) and 16×16 (right)

We can see that shading single rays is inferior to our

packet shading. Packet shading slows down the frame rate

to 75-90% of performance without shading, while the sin-

gle shading slows down to 50-75%. The lower values are



for the Sibenik’s Cathedral scene, where we use textures

instead of just solid colors. The scene also occupies larger

percentage of the resulting picture, meaning the ratio of

shaded/non-shaded rays is higher than in the other two.

Once we take into account shadow rays it is obvious

that our approach offers highly superior performance over

shading and showing each hitpoint separately. We can see

that the difference between single and packet approach is

up to factor of 6 for Sibenik’s scene and packets 8×8, the

16×16 packets give us a factor of 8. The improvement for

Happy Buddha and A10 is quite minimal and we assume

that this because of the character of the scenes. There are

virtually no occluders between a hitpoint and a light for

Happy Buddha, leading to very fast shadow ray traversal.

There are few such occlusions on the A10 models and the

benefit of tracing several shadow rays at once is small but

apparent. The Sibenik’s Cathedral scene contains a high

number of occluders (e.g., columns and railing).

7 Conclusions

Our system combines three approaches suitable for ray-

tracing of dynamic scenes. We confirmed the result pub-

lished in [3] that using even only 8 bins gives us a BVH of

good quality. Raising this number brings almost no speed

up of ray tracing and slows down the build process. We

also discovered that there is a drastic drop of performance

when the number of bins approaches 512. We confirmed

this by more fine measurement and concluded that most

probable reason is a poor cost estimate when number of

bins approaches this value from either side.

Another conclusion is that it is necessary to define de-

sired result of BVH acceleration structure before setting

its intersection/traversal cost ratio. For static scenes, when

BVH is built only once and then traversed repeatedly, the

best ratio is 1.0. However for dynamic scenes, when BVH

is rebuilt every frame, the best ratio is 0.1 for all the scenes.

We used a packet traversal [4] of BVH and vertex

culling [2] algorithm for packet-ray intersection. We

added one more test to the vertex culling algorithm that

allows us to skip intersection test for rays that miss the

leaf. This yields us a 30% speedup for scenes with small

leaves (e.g., Happy Buddha) and about 20% speedup for

scenes with large leaves over the original vertex culling

implementation. This improvement is however effective

only for large packets (16×16), which proved to be the

better choice for the overall speed of our system than the

8×8 packets suggested in [2].

Adding packet shading proved to be effective for all

scenes. However the most apparent benefit is for fully tex-

tured Sibeniks Cathedral scene when not only shade rays

in packets, but also evaluate shadow rays via packet shad-

ing.

We have not implemented any parallelization of either

BVH build or the packet tracing. We believe there is an

opportunity for another speed up for multicore machines.

The packet shading algorithm currently suffers from per-

ray access to textures. Ray coherence could be further ex-

ploited here, possibly reusing texture samples. Rays in

packets are currently organizes row-wise. Considering we

perform most operations using SSE2 intrinsics it could be

beneficial to change this organization to raise the odds of

four rays processed once behaving in a similar way e.g.,

hitting the same triangle or missing the same leaf.

References

[1] Vlastimil Havran. Heuristic Ray Shooting Algorithms.

Ph.d. thesis, Department of Computer Science and En-

gineering, Faculty of Electrical Engineering, Czech

Technical University in Prague, November 2000.

[2] Alexander Reshetov. Faster ray packets - triangle in-

tersection through vertex culling. In SIGGRAPH ’07:

ACM SIGGRAPH 2007 posters, page 171, New York,

NY, USA, 2007. ACM.

[3] Ingo Wald. On fast Construction of SAH based

Bounding Volume Hierarchies. In Proceedings of the

2007 Eurographics/IEEE Symposium on Interactive

Ray Tracing.

[4] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray

Tracing Deformable Scenes using Dynamic Bounding

Volume Hierarchies. ACM Transactions on Graphics,

26(1), 2007.


