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Abstract. Asymmetric cryptography is 
still very interesting field of research. 
Several algorithms have been proposed 
as a competition to the RSA standard. In 
this paper we will describe one of these 
algorithms, based on Elliptic Curves. We 
will briefly describe the basics of Elliptic 
Curve Cryptography (ECC) and its variants 
using polynomial and normal basis and 
affine and projection coordinates. Further, 
we will describe our hardware framework 
used to evaluate all possible combina-
tions. To achieve this we implement inter-
changeable arithmetic units and micropro-
grammable controller. 
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1. Introduction 
While RSA is currently the most used 

standard for asymmetric cryptography, 
there are several competing standards, 
offering various advantages over the RSA. 
One of these competing standards is 
Elliptic Curve Cryptography. The main 
advantage it offers over the RSA standard 
is that for the level of security ensured by 
1024bit RSA keys, ECC needs only 160bit 
keys. It is therefore more suitable for 
hardware implementation, allowing the 
cryptographic hardware to be smaller, 
faster, less power-consuming or a combi-
nation of those three. 

In Chapter 2 we will focus on the basic 
principles used in ECC, to get an insight 

into what is necessary to implement ECC 
in hardware. We will briefly describe the 
variants of ECC and how each variant 
affects the used hardware. In Chapter 3 
we will describe implementation of used 
arithmetic units. In Chapter 4 we will de-
scribe the framework and conclude what 
type of IO and controller will it require and 
in Chapter 5 we will describe the controller 
and the IO unit.   

2. Algorithm 
The basic operation required for ECC 

is a scalar multiple of a point on a curve 
k*P = P+P+...+P (k-times). For this we will 
need only algorithm for adding two arbi-
trary points on a curve. 

We could do a simple algorithm that 
will add point P k-times to an accumulated 
result. However, this would take time linear 
to k and if we use Horner scheme 
(add-and-double algorithm) instead, we 
can do the same task in logarithmic time. 

Each point on a curve is characterized 
by its coordinates. For ECC either affine 
coordinates or projective coordinates are 
used. In affine coordinate system, each 
point is represented by only two coordi-
nates (x, y), while in the projection coordi-
nate system three coordinates (x, y, z) 
represent the point. 

The main difference between these 
two coordinate systems lies in the algo-
rithm for point addition [4]. Algorithm for 
adding two points in affine coordinates (fig. 
1) requires two general multiplications, 
one squaring and one multiplicative inver-



sion. No temporary variables are neces-
sary. The algorithm for projective coordi-
nates requires four squarings, eleven 
general multiplications, eight temporary 
variables, but no inversions. 

Question obviously arises whether the 
trade-off of eight multiplications and three 
squarings for a single inversion is worth it. 
This is one of the questions our framework 
aims to solve. 

Regardless of the coordinate system 
used, the coordinates are elements of 
GF(2m). Two bases can be used to repre-
sent field elements. The first one is a 
standard polynomial basis generated by 
an appropriate irreducible polynomial. 
Each coordinate of length m is repre-
sented as a polynomial:  
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Figure 1. Addition of two points (affine) [4] 

3. Arithmetic units 
The actual vectors of m bits represent 

coefficients α belonging to appropriate 
power of x. All point operations can be 
expressed using the following field opera-
tions: addition, multiplication, division (or 
inversion) and squaring [4]. 

Addition and subtraction are the same 
for both bases and are represented by a 
simple bitwise XOR.  In Chapter 3.1 we 
will present fast squaring and Chapters 3.2 
and 3.3 will focus on multiplication and 
division respectively. 

3.1 Squaring 
While we could perform squaring via 

multiplication by the same coordinate, 
there is a faster method for each basis. In 
normal basis, moving a coefficient to the 
left by one means it is moved to double 
power of x. Squaring in normal basis can 
therefore be represented by a simple 
rotation to the left. 

Polynomial basis squaring is a bit more 
complicated. First we spread the bit repre-
sentation to double length. This way each 
coefficient is moved from kx  to kx 2 . We 
are now missing coefficients for odd pow-
ers of x. Since squaring cannot produce 
odd powers of x, we will simply insert 
zeros. The last step is reduction from the 
double length back to the original length. 
This can be done using a fixed circuit that, 
for small reduction polynomials (trinomials 
and pentanomials) has depth of two or 
three XOR gates. The whole squaring is 
therefore done by two or three layers of 
logic and thus is extremely fast. 

3.2 Multiplication 
In both coordinate systems, multiplica-

tion represents the most used operation. 
Therefore, it is vital for high performance 
to have as fast multiplier as possible. 

Polynomial multiplier evaluates the ex-
pression: 

C = A × B mod F(x), 
where F(x) is the field polynomial. 

The basic polynomial multiplier is a 
LSB (least significant bit) multiplier, also 
called bit-serial multiplier. Based on a bit in 
B, it either adds or doesn’t add an appro-
priately shifted (and reduced) polynomial A 
to the current result C in accumulator. 
Once it went through all bits in B, the 
result of multiplication is ready. 

The whole multiplication takes m clock 
cycles, where m is the length of multiplied 
polynomials. While this gives the fastest 
circuit in the means of clock frequency, it is 
possible that the result can be obtained in 
lower time using a digit-serial multiplier 
that multiplies by several bits at once. 
Another reason for using digit-serial multi-
plier is that critical path delay in the multi-
plier is not the only factor influencing  the 
maximum possible frequency of the whole 
circuit. Therefore it is advantageous to 



have means to tune multiplier performance 
to whatever arbitrary frequency is enforced 
by the used crystal or other, slower, parts 
of the circuit. 

The basic operation of a digit multiplier 
is similar to bit-serial multiplier, only in-
stead of multiplying by a least significant 
bit we multiply by a least significant digit. 
Assuming digit width D, we will start with 
the lowest D bits from polynomial B. 

We then take D copies of the polyno-
mial A (shifted by 0 to D–1 bits to the left). 
For each copy we decide whether it should 
or should not be added to the result 
(based on the appropriate bit in the digit). 
We add all D copies together; using to our 
advantage that addition requires just a 
single XOR and add the result to the result 
accumulator [3]. The principle is shown on 
Figure 2, where bDi+N denotes N-th bit in 
the i-th lowest digit. 

Figure 2. Multiple digit adder core [3] 
For the next step we multiply the poly-

nomial A by xD, i.e. shift the polynomial A 
by D bits to the left. This means we don’t 
need a circuit for left shift by an arbitrary 
number of bits but use only D different 
fixed-function circuit. Another D bit digit is 
taken from the polynomial B, filled with 
zeros if there are not enough bits left in B 
and the whole process is repeated. 

At the end, the result is accumulated in 
the result accumulator of length m+D–1 
bits. The actual result C is obtained by 
reducing content of this accumulator using 
field polynomial F(x). 

Multiplication in normal basis is com-
puted using a pipelined bit-serial Massey-
Omura [6] multiplier. It also allows simulta-
neous processing of D bits in a very similar 
manner.  

3.3 Division 
For affine coordinates we also need 

one division for each point addition. Gen-
erally, division is more expensive than 
multiplication in both bases. 

The normal basis doesn’t allow direct 
division, or at least not in a form that could 
be easily implemented in hardware. We 
therefore first compute an inversion of the 
given field element and then multiply by 
this inversion. 

We use the Itoh, Teechai, Tsu-jii (ITT) 
[5] algorithm, that is the fastest known 
algorithm calculating the inverse element 
according to the Fermat’s little theorem 
(this theorem  states that ap=a mod p, 
hence ap-2= a-1 mod p). ITT uses repeated 
multiplications and squarings.  

This principle is universal for all bases. 
However, for polynomial base there is a 
better algorithm giving us direct result of 
division. It is a slight modification of Ex-
tended Euclidean Algorithm (EEA) [7]. 

This algorithm is faster than the ITT, 
but requires a new circuit, besides the 
existing addition, squaring and multiplica-
tion. However, this special circuit uses only 
four registers and as we will never use 
multiplication and division in parallel, we 
can easily combine the two units to oper-
ate over the same set of registers. 

This results in fewer flip-flops used 
than we would require for two separate 
circuits, but there is more complicated 
logic bound to each of the four registers. 

Whether this tradeoff will actually pay 
off is dependent on a given technology. 
For ASIC, where we build a fully custom-
ized circuit, it is better to trade off some 
small amount of logic for 4·m flip-flops. 
FPGA, on the other hand, comes with a 
prepared structure and each cell contains 
a flip-flop and some small amount of logic. 
Praxis shows us, that common designs 
utilize flip-flops in only half of the used 
cells. We therefore assume that giving 
each unit a separate set of registers will, in 
FPGA, result in a circuit of roughly same 
size and possibly greater speed. 

4. Framework 
In the previous chapter we have con-

cluded that while addition and subtraction 
is the same for both bases, both squaring 



and multiplication unit are dependent on 
the used base. 

Therefore, it is not possible to have a 
circuit that will work on both bases using 
the same arithmetic units. There are two 
possible solutions to this problem. 

First is to design a framework with uni-
versal interface for the arithmetic units. 
Using a different base is then a matter of 
simply swapping the units in design and 
running the synthesis again. The disad-
vantage of this approach is that once it 
has been synthesized we have a coproc-
essor that can work on only one base. 

The second approach deals with this 
problem in tradeoff for larger area. It in-
corporates both units in the design and 
allows switching between the used bases 
by setting an appropriate configuration 
register. 

Regardless of the approach used, we 
will require some kind of register file (data 
memory), a work register and a shifter. 
The basic block diagram of the first ap-
proach is on figure 3. 

Figure 3. Main architecture data path 
So far we have focused only on the 

data path of the coprocessor that will allow 
us to perform all the elementary opera-
tions required for point addition. 

We will obviously also need some kind 
of controller that will not only direct the 
units to perform a single point addition, but 
also control the whole process of scalar 
point multiplication. 

We will also need some means to pass 
data between the coprocessor and other 
units in the hardware. We will focus on 
these in Chapter 5. 

5. Controller and IO 
We have concluded that besides the 

arithmetic units, we will also need special 
interface to pass data between the co-
processor and other units in the hardware 
and we will need a controller that will direct 
the computation itself. 

In Chapter 5.1 we will focus on various 
options for the controller and in Chap-
ter 5.2 we will describe the current state of 
our IO unit. 

5.1 Controller 
Our goal is to have the controller inde-

pendent on the base used. This is rela-
tively trivial task, given a suitable interface 
for connecting arithmetic units. Squaring 
unit requires no control at all, as it is a 
simple combinational circuit. 

Multiplication can be controlled by a 
pair of start/done wires. The problem 
arises with division/inversion unit. The 
polynomial base unit is more powerful than 
the normal base one, because it also 
allows direct division in addition to just 
inversion. 

We have decided to sacrifice this abil-
ity for the sake of universality, but the 
advantages and disadvantages are still 
evaluated. The current version however 
allows only inversion and both units can 
thus be controlled by another pair of 
start/done wires. 

While the controller can be made inde-
pendent on the used base, it still does 
depend on the coordinate system used. 

We decided to use programmable mi-
crocontroller. The main advantage of this 
approach is that it is very easy to change 
coordinate system and to fix problems by 
simply loading different firmware. 

Using the second approach to the 
framework, that contains both sets of 
arithmetic units, we can make a circuit that 
will perform scalar point multiplication with 
any combination of base-coordinate sys-
tem, based on a single configuration regis-
ter. 



It is obviously possible to store the 
firmware in ROM instead of a RAM/Flash 
memory. This would sacrifice the recon-
figurability of the design in exchange for 
lower power and area consumption. 

To allow easy firmware modification, 
we designed a very simple microassem-
bler specially for this controller. Compiler 
for this assembler has two output files. 
One is a bitstream for firmware upload, the 
other is a VHDL file that specifies content 
of ROM, should a fixed function circuit be 
desired. 

5.2 Input/Output unit 
Designing an IO unit without a speci-

fied interface puts two contending de-
mands on the designer. On one hand, we 
want the interface to be as fast as possi-
ble. On the other hand, we need the inter-
face to be as universal as possible. 

We decided to use interface with full 
handshake, allowing our coprocessor to 
operate on a frequency different from the 
bus frequency. The bus width is configur-
able during synthesis, but once the circuit 
is done, it is fixed to the given width. 

We allow two approaches to the de-
vice. In the simple serial transfer, the 
circuit first expects the coordinates of the 
multiplied point and then the value k to 
multiply it with. Once all the data are 
loaded, the circuit starts its operation. 
There is no status register or “done” wire. 
Instead, each attempt to read from the 
circuit while it operates will simply not be 
acknowledged until the computation is 
done and the data are ready. 

The second option we offer is more 
suitable for address-and-data buses, like 
PCI or memory interface. It offers an ad-
dress space where to read and write bit 
vectors of the appropriate length, an ad-
dress register and status register. 

To perform a write, we first write the 
m-bit vector into the vector address space, 
then write desired target address into the 
address register and then wait until DONE 
flag appears in the status register. 

Read operation is very similar, except 
that we first write the desired address, 
then wait for the DONE flag and then read 
the bit vector from its address space. 

Direct access to the coprocessor 
memory is not allowed. The memory or-

ganization is such that each address 
contains a single m-bit vector. The IO bus 
generally will not be m-bit wide, so direct 
access to the memory would require a 
read-modify-write cycle and, combined 
with the handshake, would add logic di-
rectly into the core. Our approach allows 
transformation from bus width bit vectors 
to m-bit vectors outside the core. 

We will evaluate the direct access op-
tion for bus operating in the same clock 
domain as coprocessor, which should 
allow us to simplify the necessary logic. 

6. Future work 
Adder, squarer and multiplier in their 

current form fulfill all requirements of the 
project. We will make further research into 
the division and inversion units. While the 
normal basis unit has already been made 
scalable (i.e. flexible in terms of number of 
bits processed in parallel) [8], the scalabil-
ity options of the polynomial unit should be 
further investigated. This property might 
suppress the disadvantage of affine coor-
dinates having one division in each point 
addition. 

Further, we will focus on evaluating 
various configurations of circuit in both 
FPGA and ASIC designs, as we have a 
reason to believe that the best configura-
tions for each technology will differ. 

We will evaluate different versions of 
firmware for our controller. The main focus 
will be to exploit the advantage of direct 
division offered by polynomial unit. We 
believe that in combination with digit-serial 
divider, the speed up of the circuit would 
outweigh the disadvantage of special 
program for each base. 

Concurrently with changes to the firm-
ware, we will also modify the microassem-
bler we use to offer a better fit into stan-
dard 32-bit wide memory. To compensate 
for the aforementioned problem with dif-
ferent code for both bases, we will re-
search possibility of adding effective 
means of function calls or macros. 

We will design a new IO unit, that will 
allow connection to bus operating in the 
same clock domain as the cryptographic 
core and we will compare it with our cur-
rent asynchronous unit with handshaking. 

The cryptographic coprocessor will be 
implemented on Combo6X card from 



project Liberouter. We will connect our 
coprocessor to the card’s current network 
framework using both synchronous and 
asynchronous IO unit and compare the 
impact it has on the performance. 

7. Conclusions 
We have described the basic principle 

of Elliptic Curve Cryptography and de-
duced the basic arithmetic operations 
required. We considered and described 
the implementation of arithmetic units 
performing these operations and com-
pared the differences between units for 
normal and polynomial bases. 

Further, we described the current state 
our framework used to evaluate these 
units and possible approaches concerning 
the tradeoff between circuit area and its 
universality. We also described reasons 
for using a programmable controller over a 
fixed function one and concluded that an 
universal IO unit poses many problems 
and it is necessary to write special IO unit 
for each given interface to obtain the 
highest possible performance. 
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