
Framework for Research of ECDSA

Tomáš Davidovič1, Martin Novotný1, Jan Schmidt1,
Martin Havlan2, Pavel Bezpalec2

1CTU in Prague, FEE, Department of Computer Science and Engineering,

Karlovo nám. 13, 121 35 Praha 2, Czech Republic

2CTU in Prague, FEE, Department of Telecommunication Engineering,
Technická 2, 166 27 Praha 6, Czech Republic

e-mail: davidt2@fel.cvut.cz, novotnym@fel.cvut.cz, schmidt@fel.cvut.cz

e-mail: havlan@fel.cvut.cz, bezpalec@fel.cvut.cz

Abstract. Asymmetric cryptography is
still very interesting field of research.
Several algorithms have been proposed
as a competition to the RSA standard. In
this paper we will describe one of these
algorithms, based on Elliptic Curves. We
will briefly describe the basics of Elliptic
Curve Cryptography (ECC) and its variants
using polynomial and normal basis and
affine and projection coordinates. Further,
we will describe our hardware framework
used to evaluate all possible combina-
tions. To achieve this we implement inter-
changeable arithmetic units and micropro-
grammable controller.

Keywords: ECC, Elliptic Curve Cryptog-
raphy, VHDL, coprocessor, Combo6X,
FPGA

1. Introduction
While RSA is currently the most used

standard for asymmetric cryptography,
there are several competing standards,
offering various advantages over the RSA.
One of these competing standards is
Elliptic Curve Cryptography. The main
advantage it offers over the RSA standard
is that for the level of security ensured by
1024bit RSA keys, ECC needs only 160bit
keys. It is therefore more suitable for
hardware implementation, allowing the
cryptographic hardware to be smaller,
faster, less power-consuming or a combi-
nation of those three.

In Chapter 2 we will focus on the basic
principles used in ECC, to get an insight

into what is necessary to implement ECC
in hardware. We will briefly describe the
variants of ECC and how each variant
affects the used hardware. In Chapter 3
we will describe implementation of used
arithmetic units. In Chapter 4 we will de-
scribe the framework and conclude what
type of IO and controller will it require and
in Chapter 5 we will describe the controller
and the IO unit.

2. Algorithm
The basic operation required for ECC

is a scalar multiple of a point on a curve
k*P = P+P+...+P (k-times). For this we will
need only algorithm for adding two arbi-
trary points on a curve.

We could do a simple algorithm that
will add point P k-times to an accumulated
result. However, this would take time linear
to k and if we use Horner scheme
(add-and-double algorithm) instead, we
can do the same task in logarithmic time.

Each point on a curve is characterized
by its coordinates. For ECC either affine
coordinates or projective coordinates are
used. In affine coordinate system, each
point is represented by only two coordi-
nates (x, y), while in the projection coordi-
nate system three coordinates (x, y, z)
represent the point.

The main difference between these
two coordinate systems lies in the algo-
rithm for point addition [4]. Algorithm for
adding two points in affine coordinates (fig.
1) requires two general multiplications,
one squaring and one multiplicative inver-

sion. No temporary variables are neces-
sary. The algorithm for projective coordi-
nates requires four squarings, eleven
general multiplications, eight temporary
variables, but no inversions.

Question obviously arises whether the
trade-off of eight multiplications and three
squarings for a single inversion is worth it.
This is one of the questions our framework
aims to solve.

Regardless of the coordinate system
used, the coordinates are elements of
GF(2m). Two bases can be used to repre-
sent field elements. The first one is a
standard polynomial basis generated by
an appropriate irreducible polynomial.
Each coordinate of length m is repre-
sented as a polynomial:

1... 01
2

2
1

1 αααα +++ −
−

−
− xxx m

m
m

m
 Normal basis represents coordinate of

length m as polynomial:
xxxx

mm

mm 0
2

1
2

2
2

1 ...
21

αααα +++
−−

−−

Figure 1. Addition of two points (affine) [4]

3. Arithmetic units
The actual vectors of m bits represent

coefficients α belonging to appropriate
power of x. All point operations can be
expressed using the following field opera-
tions: addition, multiplication, division (or
inversion) and squaring [4].

Addition and subtraction are the same
for both bases and are represented by a
simple bitwise XOR. In Chapter 3.1 we
will present fast squaring and Chapters 3.2
and 3.3 will focus on multiplication and
division respectively.

3.1 Squaring
While we could perform squaring via

multiplication by the same coordinate,
there is a faster method for each basis. In
normal basis, moving a coefficient to the
left by one means it is moved to double
power of x. Squaring in normal basis can
therefore be represented by a simple
rotation to the left.

Polynomial basis squaring is a bit more
complicated. First we spread the bit repre-
sentation to double length. This way each
coefficient is moved from kx to kx 2 . We
are now missing coefficients for odd pow-
ers of x. Since squaring cannot produce
odd powers of x, we will simply insert
zeros. The last step is reduction from the
double length back to the original length.
This can be done using a fixed circuit that,
for small reduction polynomials (trinomials
and pentanomials) has depth of two or
three XOR gates. The whole squaring is
therefore done by two or three layers of
logic and thus is extremely fast.

3.2 Multiplication
In both coordinate systems, multiplica-

tion represents the most used operation.
Therefore, it is vital for high performance
to have as fast multiplier as possible.

Polynomial multiplier evaluates the ex-
pression:

C = A × B mod F(x),
where F(x) is the field polynomial.

The basic polynomial multiplier is a
LSB (least significant bit) multiplier, also
called bit-serial multiplier. Based on a bit in
B, it either adds or doesn’t add an appro-
priately shifted (and reduced) polynomial A
to the current result C in accumulator.
Once it went through all bits in B, the
result of multiplication is ready.

The whole multiplication takes m clock
cycles, where m is the length of multiplied
polynomials. While this gives the fastest
circuit in the means of clock frequency, it is
possible that the result can be obtained in
lower time using a digit-serial multiplier
that multiplies by several bits at once.
Another reason for using digit-serial multi-
plier is that critical path delay in the multi-
plier is not the only factor influencing the
maximum possible frequency of the whole
circuit. Therefore it is advantageous to

have means to tune multiplier performance
to whatever arbitrary frequency is enforced
by the used crystal or other, slower, parts
of the circuit.

The basic operation of a digit multiplier
is similar to bit-serial multiplier, only in-
stead of multiplying by a least significant
bit we multiply by a least significant digit.
Assuming digit width D, we will start with
the lowest D bits from polynomial B.

We then take D copies of the polyno-
mial A (shifted by 0 to D–1 bits to the left).
For each copy we decide whether it should
or should not be added to the result
(based on the appropriate bit in the digit).
We add all D copies together; using to our
advantage that addition requires just a
single XOR and add the result to the result
accumulator [3]. The principle is shown on
Figure 2, where bDi+N denotes N-th bit in
the i-th lowest digit.

Figure 2. Multiple digit adder core [3]
For the next step we multiply the poly-

nomial A by xD, i.e. shift the polynomial A
by D bits to the left. This means we don’t
need a circuit for left shift by an arbitrary
number of bits but use only D different
fixed-function circuit. Another D bit digit is
taken from the polynomial B, filled with
zeros if there are not enough bits left in B
and the whole process is repeated.

At the end, the result is accumulated in
the result accumulator of length m+D–1
bits. The actual result C is obtained by
reducing content of this accumulator using
field polynomial F(x).

Multiplication in normal basis is com-
puted using a pipelined bit-serial Massey-
Omura [6] multiplier. It also allows simulta-
neous processing of D bits in a very similar
manner.

3.3 Division
For affine coordinates we also need

one division for each point addition. Gen-
erally, division is more expensive than
multiplication in both bases.

The normal basis doesn’t allow direct
division, or at least not in a form that could
be easily implemented in hardware. We
therefore first compute an inversion of the
given field element and then multiply by
this inversion.

We use the Itoh, Teechai, Tsu-jii (ITT)
[5] algorithm, that is the fastest known
algorithm calculating the inverse element
according to the Fermat’s little theorem
(this theorem states that ap=a mod p,
hence ap-2= a-1 mod p). ITT uses repeated
multiplications and squarings.

This principle is universal for all bases.
However, for polynomial base there is a
better algorithm giving us direct result of
division. It is a slight modification of Ex-
tended Euclidean Algorithm (EEA) [7].

This algorithm is faster than the ITT,
but requires a new circuit, besides the
existing addition, squaring and multiplica-
tion. However, this special circuit uses only
four registers and as we will never use
multiplication and division in parallel, we
can easily combine the two units to oper-
ate over the same set of registers.

This results in fewer flip-flops used
than we would require for two separate
circuits, but there is more complicated
logic bound to each of the four registers.

Whether this tradeoff will actually pay
off is dependent on a given technology.
For ASIC, where we build a fully custom-
ized circuit, it is better to trade off some
small amount of logic for 4·m flip-flops.
FPGA, on the other hand, comes with a
prepared structure and each cell contains
a flip-flop and some small amount of logic.
Praxis shows us, that common designs
utilize flip-flops in only half of the used
cells. We therefore assume that giving
each unit a separate set of registers will, in
FPGA, result in a circuit of roughly same
size and possibly greater speed.

4. Framework
In the previous chapter we have con-

cluded that while addition and subtraction
is the same for both bases, both squaring

and multiplication unit are dependent on
the used base.

Therefore, it is not possible to have a
circuit that will work on both bases using
the same arithmetic units. There are two
possible solutions to this problem.

First is to design a framework with uni-
versal interface for the arithmetic units.
Using a different base is then a matter of
simply swapping the units in design and
running the synthesis again. The disad-
vantage of this approach is that once it
has been synthesized we have a coproc-
essor that can work on only one base.

The second approach deals with this
problem in tradeoff for larger area. It in-
corporates both units in the design and
allows switching between the used bases
by setting an appropriate configuration
register.

Regardless of the approach used, we
will require some kind of register file (data
memory), a work register and a shifter.
The basic block diagram of the first ap-
proach is on figure 3.

Figure 3. Main architecture data path
So far we have focused only on the

data path of the coprocessor that will allow
us to perform all the elementary opera-
tions required for point addition.

We will obviously also need some kind
of controller that will not only direct the
units to perform a single point addition, but
also control the whole process of scalar
point multiplication.

We will also need some means to pass
data between the coprocessor and other
units in the hardware. We will focus on
these in Chapter 5.

5. Controller and IO
We have concluded that besides the

arithmetic units, we will also need special
interface to pass data between the co-
processor and other units in the hardware
and we will need a controller that will direct
the computation itself.

In Chapter 5.1 we will focus on various
options for the controller and in Chap-
ter 5.2 we will describe the current state of
our IO unit.

5.1 Controller
Our goal is to have the controller inde-

pendent on the base used. This is rela-
tively trivial task, given a suitable interface
for connecting arithmetic units. Squaring
unit requires no control at all, as it is a
simple combinational circuit.

Multiplication can be controlled by a
pair of start/done wires. The problem
arises with division/inversion unit. The
polynomial base unit is more powerful than
the normal base one, because it also
allows direct division in addition to just
inversion.

We have decided to sacrifice this abil-
ity for the sake of universality, but the
advantages and disadvantages are still
evaluated. The current version however
allows only inversion and both units can
thus be controlled by another pair of
start/done wires.

While the controller can be made inde-
pendent on the used base, it still does
depend on the coordinate system used.

We decided to use programmable mi-
crocontroller. The main advantage of this
approach is that it is very easy to change
coordinate system and to fix problems by
simply loading different firmware.

Using the second approach to the
framework, that contains both sets of
arithmetic units, we can make a circuit that
will perform scalar point multiplication with
any combination of base-coordinate sys-
tem, based on a single configuration regis-
ter.

It is obviously possible to store the
firmware in ROM instead of a RAM/Flash
memory. This would sacrifice the recon-
figurability of the design in exchange for
lower power and area consumption.

To allow easy firmware modification,
we designed a very simple microassem-
bler specially for this controller. Compiler
for this assembler has two output files.
One is a bitstream for firmware upload, the
other is a VHDL file that specifies content
of ROM, should a fixed function circuit be
desired.

5.2 Input/Output unit
Designing an IO unit without a speci-

fied interface puts two contending de-
mands on the designer. On one hand, we
want the interface to be as fast as possi-
ble. On the other hand, we need the inter-
face to be as universal as possible.

We decided to use interface with full
handshake, allowing our coprocessor to
operate on a frequency different from the
bus frequency. The bus width is configur-
able during synthesis, but once the circuit
is done, it is fixed to the given width.

We allow two approaches to the de-
vice. In the simple serial transfer, the
circuit first expects the coordinates of the
multiplied point and then the value k to
multiply it with. Once all the data are
loaded, the circuit starts its operation.
There is no status register or “done” wire.
Instead, each attempt to read from the
circuit while it operates will simply not be
acknowledged until the computation is
done and the data are ready.

The second option we offer is more
suitable for address-and-data buses, like
PCI or memory interface. It offers an ad-
dress space where to read and write bit
vectors of the appropriate length, an ad-
dress register and status register.

To perform a write, we first write the
m-bit vector into the vector address space,
then write desired target address into the
address register and then wait until DONE
flag appears in the status register.

Read operation is very similar, except
that we first write the desired address,
then wait for the DONE flag and then read
the bit vector from its address space.

Direct access to the coprocessor
memory is not allowed. The memory or-

ganization is such that each address
contains a single m-bit vector. The IO bus
generally will not be m-bit wide, so direct
access to the memory would require a
read-modify-write cycle and, combined
with the handshake, would add logic di-
rectly into the core. Our approach allows
transformation from bus width bit vectors
to m-bit vectors outside the core.

We will evaluate the direct access op-
tion for bus operating in the same clock
domain as coprocessor, which should
allow us to simplify the necessary logic.

6. Future work
Adder, squarer and multiplier in their

current form fulfill all requirements of the
project. We will make further research into
the division and inversion units. While the
normal basis unit has already been made
scalable (i.e. flexible in terms of number of
bits processed in parallel) [8], the scalabil-
ity options of the polynomial unit should be
further investigated. This property might
suppress the disadvantage of affine coor-
dinates having one division in each point
addition.

Further, we will focus on evaluating
various configurations of circuit in both
FPGA and ASIC designs, as we have a
reason to believe that the best configura-
tions for each technology will differ.

We will evaluate different versions of
firmware for our controller. The main focus
will be to exploit the advantage of direct
division offered by polynomial unit. We
believe that in combination with digit-serial
divider, the speed up of the circuit would
outweigh the disadvantage of special
program for each base.

Concurrently with changes to the firm-
ware, we will also modify the microassem-
bler we use to offer a better fit into stan-
dard 32-bit wide memory. To compensate
for the aforementioned problem with dif-
ferent code for both bases, we will re-
search possibility of adding effective
means of function calls or macros.

We will design a new IO unit, that will
allow connection to bus operating in the
same clock domain as the cryptographic
core and we will compare it with our cur-
rent asynchronous unit with handshaking.

The cryptographic coprocessor will be
implemented on Combo6X card from

project Liberouter. We will connect our
coprocessor to the card’s current network
framework using both synchronous and
asynchronous IO unit and compare the
impact it has on the performance.

7. Conclusions
We have described the basic principle

of Elliptic Curve Cryptography and de-
duced the basic arithmetic operations
required. We considered and described
the implementation of arithmetic units
performing these operations and com-
pared the differences between units for
normal and polynomial bases.

Further, we described the current state
our framework used to evaluate these
units and possible approaches concerning
the tradeoff between circuit area and its
universality. We also described reasons
for using a programmable controller over a
fixed function one and concluded that an
universal IO unit poses many problems
and it is necessary to write special IO unit
for each given interface to obtain the
highest possible performance.

8. Acknowledgement
This work has been supported by

CESNET, project 140R1/2005.

9. References
[1] Bečvář, M. - Schmidt, J.: Reconfigur-

able Acceleration of Intel PC: A Quan-
titative Analysis, Proceedings of IEEE
Design and Diagnostics of Electronic
Circuits and Systems Workshop. Gyor:
Széchenyi István University of Applied
Sciences, 2001, s. 93-96. ISBN 963-
7175-16-4.

[2] Borůvka, O.: Kryptografický procesor,
CTU in Prague, Diploma thesis

[3] Guajardo, J. - Güneysu, T.- Kumar, S.
S. - Paar, C. – Pelzl, J.: "Efficient
Hardware Implementation of Finite
Fields with Applications to Cryptogra-
phy", Acta Applicandae Mathematicae:
An International Survey Journal on
Applying Mathematics and Mathemati-
cal Applications, Volume 93, Numbers
1-3, pp. 75-118, September 2006.

[4] IEEE P1363 Standard for Public-key
Cryptography (Draft Version 13). IEEE,
November 1999

[5] Itoh, T. - Teechai, O. – Tsujii, S.: A
Fast Algorithm for Computing Multipli-
cative Inverse in GF(2t) using normal
bases. J. Society for electronic Com-
munications (Japan) 44 (1986), 31-36.

[6] Omura, J., Massey, J.: Computational
Method and Apparatus for Finite Field
Arithmetic. U.S. patent number
4,587,627, 1986

[7] Arazi, B.: Efficient execution of Euclid
algorithm over GF(2n); unpublished

[8] Schmidt, J., Novotny, M.: Normal Basis
Multiplication and Inversion Unit for El-
liptic Curve Cryptographhy. In Pro-
ceedings of the 10th IEEE International
Conference on Electronics, Circuits
and Systems. Piscataway: IEEE, 2003,
p. 82-85.

