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Figure 1: Comparison of our approach with Virtual Spherical Lights (VSLs). Left: VSLs fail to capture small local glossy reflections (time:
6 m 26 s). Right: our method (time: 4 m 59 s) computes these reflections more efficiently and accurately by using visibility approximations for
the low-rank global light transport, and local lights for the high-rank localized light transport.

Abstract

Accurately rendering glossy materials in design applications, where
previewing and interactivity are important, remains a major chal-
lenge. While many fast global illumination solutions have been pro-
posed, all of them work under limiting assumptions on the materials
and lighting in the scene. In the presence of many glossy (direc-
tionally scattering) materials, fast solutions either fail or degenerate
to inefficient, brute-force simulations of the underlying light trans-
port. In particular, many-light algorithms are able to provide fast
approximations by clamping elements of the light transport matrix,
but they eliminate the part of the transport that contributes to accu-
rate glossy appearance. In this paper we introduce a solution that
separately solves for the global (low-rank, dense) and local (high-
rank, sparse) illumination components. For the low-rank compo-
nent we introduce visibility clustering and approximation, while
for the high-rank component we introduce a local light technique
to correct for the missing illumination. Compared to competing
techniques we achieve superior gloss rendering in minutes, making
our technique suitable for applications such as industrial design and
architecture, where material appearance is critical.
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1 Introduction

Accurate rendering in the presence of glossy materials in design ap-
plications, where effective previews are important, remains a major
challenge. Existing techniques trade off between performance and
accuracy. For example, pure Monte Carlo solutions are perfectly
accurate given enough samples, but very slow. On the other hand,
interactive techniques achieve performance by limiting their sup-
port for materials by assuming diffuse or low-frequency material
representations, sometimes extensible to perfectly specular [Wang
et al. 2009], and/or requiring significant precomputation, as in PRT-
based algorithms [Cheslack-Postava et al. 2008]. Instant radiosity-
based algorithms are gaining popularity because of their simplicity
and their ability to effectively leverage GPU performance. These
formulations convert global illumination into the problem of ren-
dering with many virtual point lights (VPLs). These approaches
assume that any individual VPL does not significantly affect light-
ing. Thus, “spiky” lights (either because of BRDF or proximity)
are eliminated through clamping their contribution to some user-
specified maximum value. However, clamping can negatively im-
pact accurate material perception [Křivánek et al. 2010], and thus
curb the use of these algorithms in design applications. Recently,
virtual spherical lights [Hašan et al. 2009] were introduced to avoid
the illumination loss from clamping, but at the expense of blurring
some of the sharp reflections that provide important material cues.
In this paper we introduce an alternative approach that alleviates
these limitations and offers a better approximation of global illumi-
nation rendering with sharp glossy reflections.

Our approach is to split the light transport into two components:
a dense global component and a sparse localized component. The
global component of the light transport matrix corresponds to stan-
dard clamped instant radiosity and can be approximated well by
techniques like matrix row-column sampling [Hašan et al. 2007].
We further observe that visibility can be separately (and often more
coarsely) approximated compared to shading, particularly in scenes
with glossy materials. We leverage this observation to construct
a novel visibility clustering algorithm that requires fewer shadow
maps than standard matrix row-column sampling. To approximate
the local, high-rank component of the light transport, we introduce
a scheme to trace local virtual lights from visible surfaces, and have
these local lights correct the instant radiosity solution by compen-



sating for the lost energy through clamping. The time required to
render the local lights is on the same order as for the global lights.
This is in contrast with the path-traced compensation of Kollig and
Keller [2004], where compensation dominates rendering in glossy
scenes. The local lights illuminate small tiles of 32 × 32 pixels,
and we are able to approximate their visibility, noting that most
shadowing effects are already correctly handled in the global in-
stant radiosity component of the solution. Thus by coupling visibil-
ity approximation for global lights and compensation through local
lights we shade highly glossy materials efficiently.

Our global and local VPL technique with visibility approximations
can achieve efficient rendering of scenes with glossy light transport
in minutes for scenes with complex materials and lighting. The
proposed solution could benefit applications where previewing of
product appearance is critical and can have significant economic
impact, for example in industrial design and architecture.

2 Related Work

Many previous global illumination methods have been designed
without focus on glossy interreflection, and thus have problems
when applied to glossy scenes. In many cases, the problem is that
illumination is gathered from a discrete set of samples that has not
been adapted to the requirements of the illumination receivers; in
other techniques the adaptivity comes at a significant cost.

Non-adaptive methods. Rendering algorithms based on the in-
stant radiosity formulation [Keller 1997] generate a number of vir-
tual point lights (VPLs) to approximate indirect illumination, and
shade visible surfaces from these lights. Matrix row-column sam-
pling [Hašan et al. 2007] samples a small number of rows and
columns from the large matrix of light-surface connections. Light-
cuts [Walter et al. 2006] use a hierarchy on the set of lights and/or
surface samples to improve the scalability of connection computa-
tions. Ritschel et al. [2008] use approximate shadow maps to ac-
celerate rendering. Laine et al. [2007] propose incremental instant
radiosity for animated sequences, where only a subset of shadow
maps is recomputed in each frame.

In theory, many-light methods provide a correct, unbiased solu-
tion to the rendering equation; however, “spikes” (singularities) can
be produced in parts of the image that strongly depend on a sin-
gle VPL, since the BRDF and the geometry term can have a very
large value compared to the light density. This is normally handled
by clamping, which often removes interesting glossy illumination
effects. The virtual spherical light (VSL) approach [Hašan et al.
2009] addresses the singularities and clamping requirement, but in
some cases the density of the non-adaptively distributed VSLs is
insufficient to reproduce sharp details of glossy reflection. This is
also true for lightcuts variants, which do adaptively choose a subset
of lights for shading, but the original discrete set itself is usually
not sufficient for highly glossy effects.

The micro-rendering framework of Ritschel et al. [2009] provides
interactive solutions and does not lead to singularities, but also has
no mechanism to increase the density of samples in areas of spa-
tial proximity or in glossy BRDF lobes, and cannot be easily ex-
tended to multiple bounces. Laurijssen et al. [2010] replaces sharp
BRDFs on a cluster of camera path vertices by a smoother distribu-
tion, thereby reducing noise in indirect highlights.

Adaptive methods. Path tracing, bidirectional path tracing and
Metropolis light transport [Veach 1997] use a number of strategies
based on BRDF importance sampling to preferentially find paths
with strong contributions to image pixels. These are unbiased ap-
proaches that can deliver the highest quality; however, they are
wasteful in the sense that expensively constructed paths are usu-

ally not reused for many pixels. Kollig and Keller [2004] compen-
sate for the clamped illumination in instant radiosity approaches by
a recursive path tracing approach; however, in glossy scenes the
compensation can be as slow as pure path tracing. Our local light
approach is very similar in how it computes the compensation for
clamping, but it is capable of doing so in time comparable to the
clamped many-light rendering.

Segovia et al. [2006] introduced a many-light method that traces
VPLs from the camera; this is related to our approach, but their
VPLs are used globally and only applied to diffuse scenes. Path
reuse [Bekaert et al. 2002] uses a similar concept to our local lights
in a path-tracing context, but full visibility is checked for the con-
nections used for path reuse, which limits possible speed-up. In
contrast, our technique can afford to approximate the visibility for
local lights, since it is computing only the compensation to a global
pass that already handles most shadowing effects.

Photon mapping with final gathering [Jensen 2001] can utilize
adaptive BRDF importance sampling from the camera, but the pho-
ton distribution itself is not adaptive, so large numbers of photons
and nearest neighbors are required in glossy scenes. Progressive
photon mapping [Hachisuka et al. 2008] addresses memory require-
ments of photon mapping by multi-pass processing, but does not
fundamentally improve convergence.

Other related work. Our visibility clustering solution is similar
to [Dong et al. 2009], which uses k-means on light positions and
normals, while we use a data-driven approach based on a sparse
sampling of visibility and shading. Arikan et al. [2005] decompose
irradiance into near and far components, handling them by different
approaches. This is related to our clamping-compensation decom-
position, but does not consider glossy inter-reflection. Cheslack-
Postava et al. [2008] introduce a precomputed method based on
visibility approximation; their data-driven light tree construction is
related to our visibility clustering algorithm.

3 Overview
In the path formulation of global illumination [Veach 1997], the
illumination on a pixel j can be computed as an integral over all
light paths in the scene passing through the pixel:

Ij =

∫
Ω

fj(x̄)dµ(x̄),

where µ is a measure on the path space Ω =
⋃

k≥1 Ωk, and Ωk

is the space of paths with k segments, x̄ = x0x1 . . . xk, such that
x0 is the camera position, x1 is the surface point directly visible
through the pixel, xk is on a light source and x2, . . . , xk−1 are any
light bounce points in the scene. The path contribution fj(x̄) is a
product of BRDF and geometry terms on the vertices of the path,
finally multiplied by light emission:

fj(x̄) =

(
k−1∏
i=1

fr(xi−1←xi←xi+1)G(xi↔xi+1)

)
Le(xk→xk−1).

We will assume the scene is lit by a set of direct point light sources
Ld; area lights or environment maps can be handled by discretiza-
tion to a large number of point lights. Under this assumption, paths
of length 1 and 2 (emission and direct illumination) can be easily
handled by summation over point lights, so the problem is reduced
to computing the indirect component over paths of length 3 or more.
Let Ωind =

⋃
k≥3 Ωk. The indirect component Iind

j can be com-
puted by Monte Carlo integration, sampling N random paths and
summing their contributions:

Iind
j =

∫
Ωind

fj(x̄)dµ(x̄) ≈
N∑

i=1

fj(x̄i)

ρ(x̄i)
. (1)
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Figure 2: Conceptual overview of our algorithm. Standard (global) virtual point lights are created by particle tracing (a), and a dense,
clamped lighting matrix is assembled and row-sampled as in Hašan et al. [2007] (b). The reduced row matrix is separated into shading
and visibity matrices; a clustering is found, with a binary visibility representative for every cluster (c). The shading is accumulated using
the visibility representatives (d). Local lights are traced from image tiles (e) (here shown for one tile), and their intensities are computed by
connection to global lights and probability density summation (f). This defines a sparse matrix of local light contributions (g) and is used to
compute the clamping compensation (h). Adding (d) and (h) produces the final result (i).

Here ρ(x̄) is the path density (the number of paths per unit mea-
sure), and has to be positive for all paths with non-zero contribu-
tions. If all samples are independent and identically distributed with
probability density p(x̄), then we get the familiar ρ(x̄) = Np(x̄),
though this does not have to be the case; for example, stratification
can be applied.

Many-light methods. Algorithms based on the many-light ap-
proximation [Keller 1997] provide a sampling strategy for the
above integral, by tracing sub-paths from direct light sources, treat-
ing these sub-paths as virtual point lights (VPLs), and connecting
them to the visible surface samples (i.e. camera sub-paths of the
form x0x1). This can conveniently be expressed as a lighting ma-
trix A of light-sample contributions (i.e., the element Aij will be
the contribution of light j to sample i). In theory, this provides
an unbiased solution to the global illumination problem; combined
with the simplicity of the algorithm and the possibility of efficient
implementations, this leads to the significant popularity of many-
light methods in recent research.

Unfortunately, this sampling strategy is not always ideal, since the
VPL density can be insufficient in corners and within glossy lobes.
More precisely, the problem is that the path contribution fj(x̄) con-
tains the following terms that have not been importance-sampled
[Hašan et al. 2009]:

fr(x0←x1←x2) G(x1↔x2) fr(x1←x2←x3) (2)

If any of these terms is large (which often happens in corners and
within glossy lobes), then a naı̈ve application of the algorithm can
cause disturbing artifacts. This is usually handled by clamping the
terms in (2) to a user-specified constant c, and also by replacing the
second BRDF term by a diffuse approximation (which we do not
do in this paper). The clamping has an additional benefit of lower-
ing the rank of A, which improves the convergence of methods like
row-column sampling and lightcuts, but the major drawback is that
much glossy interreflection is lost. Virtual spherical lights use blur-
ring rather than clamping to lower the rank of A, which preserves
illumination energy, but loses the clarity of glossy reflections.

Compensation. Compensating for the clamped illumination was
proposed by Kollig and Keller [2004], but their solution is most ef-
ficient for diffuse scenes; in the presence of glossy BRDFs it is only
marginally more efficient than pure path tracing. Instead, we notice
that the low-rank, dense, global portion of the transport is handled
well by the primary many-light technique, while the missing illu-
mination tends to be sparse or localized in position-direction space.
We propose to use a second many-light technique based on local
lights to compensate. We define the clamping weights w1 and w2:

w1(x̄) = min

(
1,

c

fr(x0←x1←x2) G(x1↔x2) fr(x1←x2←x3)

)
and w2(x̄) = 1− w1(x̄). The indirect illumination integral is thus
split into the clamped part, I1

j , and the compensation part, I2
j :

I1
j =

∫
Ωind

w1(x̄)fj(x̄)dµ(x̄) I2
j =

∫
Ωind

w2(x̄)fj(x̄)dµ(x̄) (3)

We can compute I1
j by converting it to a dense, low-rank global

light matrix Ag and applying any suitable many-light algorithm. In
this paper, we use the method of visibility clustering (Section 4). To
handle the compensation I2

j , Section 5 introduces novel local lights
to convert the problem into a sparse, high-rank local matrix Al.
Figure 2 illustrates our system and Figure 3 gives a pseudo-code.

4 Visibility Clustering for Global Lights
In this section we introduce a data-driven visibility clustering al-
gorithm that improves upon the matrix row-column sampling tech-
nique of Hašan et al. [2007], especially in cases where many col-
umn samples (and shadow map computations) are desired. Shadow
map computations tend to be more expensive than shading, but
shading is what needs to be sampled more densely for highly glossy
materials. Therefore, we propose to partition the global lights into c
clusters, render a single representative shadow map to approximate
the visibility in each cluster, and combine that with the shading from
all lights in the cluster.

Similar to [Hašan et al. 2007], we first sample a small subset of the
rows of Ag , resulting in the reduced matrix R. We then optimize



the clustering on R, and use the clustering for the full columns of
Ag . Due to the low-rank nature of Ag , this produces good results.

Clustering objective. Each element of R expresses the contribu-
tion of a global light to a selected pixel, and each such contribution
is the product of visibility and shading. Therefore, we can decouple
the matrix into the visibility and shading components, R = V�S,
where � denotes element-wise matrix multiplication. We will de-
note the columns of V and S as vi and si. The key step in our
algorithm is finding a clustering of the columns of R together with
associated representatives from V, such that the error of approxi-
mating the visibility within each cluster by the representative visi-
bility is minimized.

Assume that a clustering C = C1, . . . , Cc is given, together with
representative indices r1, . . . , rc in each cluster. We define the cost
of a cluster as the error (in L2-norm) incurred with the optimal rep-
resentative. A light’s distance to the representative can be defined
as the error incurred by using the representative’s visibility rather
than the lights’s own, i.e., di,rp = ‖si� (vi−vrp)‖; note that such
a distance measure is non-symmetric. To find the optimal cluster-
ing, we want to minimize the sum of squared distances from each
light to its representative. More formally, the cost of a clustering
can be expressed as:

cost(C) =

c∑
p=1

cost(Cp) =

c∑
p=1

∑
i∈Cp

‖si � (vi − vrp)‖2. (4)

This clustering problem is related to the k-means and k-median
problems, but with a different, non-symmetric distance measure.

Clustering algorithm. We use a hierarchical partitioning ap-
proach: starting with all lights in a single cluster, we keep split-
ting the cluster with currently largest cost, until the desired number
of clusters is reached. To split a cluster into two, we choose the
column that is farthest from the current representative as a second
representative, and iterate the following two steps, each of which is
guaranteed not to increase the objective function:

1. Create two partitions by assigning each column to the closer of
the two representatives based on the non-symmetric distance di,rp

2. Pick an optimal representative for the two partitions. (A repre-
sentative of a cluster is optimal if it minimizes the cluster cost.)

We could iterate until convergence, but we found that 1-2 iterations
are sufficient to find a good cluster split. To pick the optimal repre-
sentative efficiently, we leverage the fact that visibility is a binary
function. For each row of the cluster submatrix, we compute two
numbers: the errors incurred by approximating the visibility in the
row by 0 and by 1; this can be done in a linear pass. In a second
linear pass, we evaluate the error of any representative by picking
and summing the appropriate error values for each row.

Due to the representative refinement step, the hierarchical parti-
tioning strategy is slowest in the beginning, when spliting very
large clusters. We improve performance by using the position of
the global lights for the first 16 splits, roughly doubling clustering
speed with no negative impact. We also parallelize the hierarchical
splitting algorithm, by keeping a thread-safe priority queue of the
current clusters, and using multiple worker threads for splitting.

Final rendering. Once the clustering have been found, we render
the global lights by iterating over the visibility clusters. For each
cluster, we compute the shadow map for the cluster’s representative,
query it to produce a shadow mask that specifies a visibility value
for each pixel, and accumulate the shading for each visible pixel
from all lights in the cluster (unlike row-column sampling, which
uses both visibility and shading only from the representative).

5 Local Lights
Recall that we want to find a technique to compute the component
I2

j (defined in Equation 3) missing (clamped away) from the global
solution. Intuitively, as the global solution leads to a dense, low-
rank matrix, one would expect that the compensation problem can
be formulated as a high-rank, sparse matrix, and that an algorithm
should exist that takes advantage of this particular structure. Note
that this algorithm has to be a complete global illumination solution
(we could set w1 = 0 and w2 = 1, leaving all work to the compen-
sation), but ideally we would like it to be well adapted to handling
exactly the localized illumination effects that remain in I2

j . We have
found such a technique, based on the concept of local lights.

Derivation of local lights. Consider a simple gathering algorithm
that would compute the compensation I2

j by tracing r rays using
BRDF importance sampling at point x1, connecting each hitpoint
x2 to a single global light g by importance sampling according to
power, and scaling the contribution by the clamping compensation
weight w2(x̄). The global lights already handle multiple indirect
bounces; therefore, so does this gathering algorithm. This is a vari-
ation of the Kollig-Keller approach [2004].

Note that the ray hitpoints x2 could be thought of as “local lights”
that contribute their illumination to only a single pixel: the one they
were sampled from. This thought experiment suggests the waste-
fulness of the technique; would it not be better to contribute the
illumination to neighboring pixels as well, thus amortizing the ef-
fort in creating the local light?

We consider a small image tile of size t × t, where t = 32 is a
typical value, and we let all the local lights that originate from this
tile contribute to all pixels in the tile. The key challenge is to define
the contribution of such a local light at position x2 to any tile pixel
x1. Using equation (1), all we need is to define the contribution
and density of the imaginary path x̄ = x0x1x2xg , where xg is the
position of the global light g. We find that this contribution will be:

w2(x̄)fr(x0←x1←x2)G(x1↔x2)fr(x1←x2←xg)Eg(x2)

ρ(x2)pg
,

where Eg(x2) is the irradiance due to the global light g at point x2,
pg is the discrete probability of choosing g out of all global lights,
and ρ(x2) is the density of local lights generated from the current
tile, computed as the aggregate density of generating a local light at
x2 by BRDF sampling from all pixels in the tile:

ρ(x2) =
∑

x1∈tile
ρ(x0→x1→x2).

The density ρ(x0→x1→x2) depends on the exact distribution used
for BRDF importance sampling (which may or may not precisely
match the BRDF) and on the number of samples taken.

Visibility. We ignore visibility computation in the above equa-
tions, both in the geometry termG(x1↔x2) and in the density term
ρ(x0→x1→x2). Note that x2 is necessarily visible from the point
x1 where the local light originated, and other points x′1 in the tile
will usually also be visible from x2, especially over short distances
(and over long distances we often have w2 = 0 anyway). This
assumption causes very few problems and allows for an efficient
computation of local lights on the GPU. Note that a local light can
sometimes contribute to a part of the tile that is quite distant from
the pixel where it originated, though in practice the compensation
weight w2 will often be very low or zero in such situations, and we
have not observed problems caused by this.

Rejection. Local lights often end up in areas that have not been
clamped (where w1 = 1), and will have w2 = 0 and therefore
zero contribution. However, checking if w2 is indeed zero over



def render ( scene , opts ) :
img = zero img ( opts . img s ize )
dfb = crea te deep f ramebuf fe r ( scene , opts . img s ize )
g l o b a l l i g h t s = scene . d i r e c t l i g h t s ( ) + t r a c e i n d i r e c t l i g h t s ( scene )
render global component ( scene , opts , dfb , g l o b a l l i g h t s , img )
render loca l component ( scene , opts , dfb , g l o b a l l i g h t s , img )
return img

def render global component ( scene , opts , dfb , g l o b a l l i g h t s , img ) :
# create reduced shading and v i s i b i l i t y matr ices by row sampling
S = zeros ( opts . num rows , len ( g l o b a l l i g h t s ) )
V = zeros ( opts . num rows , len ( g l o b a l l i g h t s ) )
row p ixe l s = choose random pixels ( dfb , opts . num rows )

for p i x e l in r ow p ixe l s :
shading , v i s i b i l i t y = render row on gpu ( p i xe l , g l o b a l l i g h t s )
S( p i x e l . index , : ) = shading
V( p i x e l . index , : ) = v i s i b i l i t y

# v i s i b i l i t y c l u s t e r i n g
c l u s t e r s = [ i n i t i a l c l u s t e r ( g l o b a l l i g h t s , S, V ) ]

while len ( c l u s t e r s ) < opts . num clusters :
c = e x t r a c t h i g h e s t c o s t c l u s t e r ( c l u s t e r s )
c1 , c2 = s p l i t ( c ) # use s p l i t t i n g a lgo r i thm from sec t ion 4
c l u s t e r s += [ c1 , c2 ]

# render c l u s t e r s
for c in c l u s t e r s :

vis mask = r e n d e r v i s i b i l i t y o n g p u ( dfb , c . rep )
for l i g h t in c . i tems :

shading = render shading on gpu ( dfb , l i g h t , opts . clamp )
img += vis mask ∗ shading

def render loca l component ( scene , opts , dfb , g l o b a l l i g h t s , img ) :
for p i x e l in dfb . p i x e l s :

for i in range (0 , n u m l o c a l l i g h t s p e r p i x e l ) :
# create l o c a l l i g h t by BRDF importance sampling
d i r e c t i o n = p i x e l . sample brdf ( )
l i g h t = t race ( p i x e l . pos i t i on , d i r e c t i o n )
i f l i g h t == None : continue

# connect to g loba l l i g h t , to determine the i n t e n s i t y
# o f the l o c a l l i g h t and i t s incoming d i r e c t i o n
i n t e n s i t y , incoming = connect ( l i g h t , g l o b a l l i g h t s )

# l o c a l l i g h t r e j e c t i o n
clamped term = f r ( camera <− p i x e l <− l i g h t ) ∗ G( p i xe l , l i g h t ) ∗

f r ( p i x e l <− l i g h t <− incoming )
i f clamped term < opts . clamp / 2 : continue

# choose a t i l e t h a t conta ins t h i s p i x e l
t i l e = choose random o f f se t t i l e ( p i x e l )

# f i n d the dens i t y ( i n area measure ) o f t h i s l i g h t , accounts f o r r e j e c t i o n
rho = 0
for p in t i l e . p i x e l s : rho += eva l a rea pdf on gpu ( p , l i g h t )

# compute c o n t r i b u t i o n to t i l e p i x e l s
l i g h t . incoming = incoming
l i g h t . i n t e n s i t y = i n t e n s i t y / rho
for p in t i l e . p i x e l s : img [ p ] += shade w2 on gpu ( p , l i g h t , opts . clamp )

def connect ( l o c a l l i g h t , g l o b a l l i g h t s ) :
# f o r s i m p l i c i t y , we show a s i n g l e power−sampled connect ion ; o ther schemes are
# poss ib le (we use K o l l i g−K e l l e r compensation i n Tableau , Disney , and Ki tchen 2)
g l o b a l l i g h t , prob = sample power ( g l o b a l l i g h t s )
i n t e n s i t y = shade ( l o c a l l i g h t , g l o b a l l i g h t ) / prob
return i n t e n s i t y , normal ize ( g l o b a l l i g h t . pos− l o c a l l i g h t . pos )

Figure 3: Pseudo-code of our algorithm.

the whole tile would be expensive; we instead use the following
heuristic: if w2 would have been zero for the generating pixel even
if the clamping constant c was halved, the light is rejected. Note
that this does not introduce bias, but care must be taken to correctly
define ρ(x0→x1→x2); it is the density of lights created at x2 by
sampling from x1 that would not have been rejected.

Reusing samples traced from the camera has been explored in
[Segovia et al. 2006] and [Bekaert et al. 2002]; our local lights are
distinguished by several features, including their use only for the
compensation I2

j , the possibility of rejection in areas where com-
pensation is not necessary, and their locality and visibility approxi-
mation that allow for efficient GPU implementation.

6 Implementation Details
This section lists some implementation improvements to the perfor-
mance and image quality of the algorithm.

Local light clamping. In scenes with glossy surfaces very close to
each other, the occasional “spikes” (singularities) can still appear
even with local lights. To prevent the resulting artifacts, a small

amount of clamping can be applied to the contribution of a local
light to pixels and/or the connection to the global light. Connec-
tion clamping can be compensated by the Kollig-Keller technique
[2004], applied to the local-global connection. We use this tech-
nique in the Tableau, Disney and Kitchen 2 scenes, using 3 – 10
compensation rays per local light. This removes the bias introduced
by connection clamping at the expense of additional ray tracing.

Jittered tiling. Subdividing the image into fixed tiles has the dis-
advantage that tile boundaries can be perceptible. We overcome this
problem by randomly choosing, for each local light, a correspond-
ing tile that contains the pixel where the local light originated. Fur-
thermore, we can also weight the contributions to tile pixels by any
kernel that preserves energy; we use a linear ramp on the tile edges
to render them even less perceptible. These techniques improve
the rendering quality while not introducing bias into the result; the
only bias in the local light method comes from ignoring visibility
and their optional clamping.

Antialiasing. For the local lights, as well as for larger visibility
clusters, we employ interleaved sampling antialiasing, where each
light contributes to only a single subpixel within a pixel.

7 Results

In this section we first provide insight into our methods for each
transport matrix component individually. Next, we show how the
strengths of the two methods complement each other, resulting
in fast generation of high quality images. We then show results
for four scenes, each with its glossy-glossy interaction challenges,
and compare them with path tracing and the virtual spherical light
(VSL) technique from [Hašan et al. 2009]. The image sizes are
800×600 and use 3×3 anti-aliasing with interleaved sampling. All
our measurements are done on a system with two Intel Xeon X5560
processors (with 4 cores each), 8 GB RAM, and an NVIDIA GTX
480 graphics card. Path traced images were generated on a cluster
of 16 nodes, where each node was a dual Xeon 2.83 GHz (4-core)
machine. Reported times for path traced images are the time using
only one node of the cluster (computed by adding the times on all
cluster nodes together).

Figure 5 shows a detail of our Tableau scene (for the full image see
Figure 8) rendered with matrix row column sampling (MRCS) and
our method, rendered in approximately the same time. It clearly
demonstrates the extra image quality our method is able to achieve
in scenes with curved glossy surfaces because we are able to use
more shading samples, even though we use fewer shadow maps for
visibility. However, we note that visibility clustering and MRCS

MRCS our visiblity clustering

Figure 5: Global light methods. Comparison of matrix-row column
sampling (left: 202 seconds) and visibility clustering (right: 213
seconds). Both methods use 200,000 VPLs, and compute only indi-
rect illumination. MRCS selects 10k lights for shadow map evalu-
ation and shading, while visibility clustering uses only 5k shadow
maps and shades from all VPLs, yielding less splotchy images.
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Figure 4: Component separation. Left: the long distance effects captured by global lights; notice the shadows behind bottles on the counter.
Center: we show the local glossy-glossy interaction, mainly between the back wall and the towel rack and faucet just in front of it. Right:
combination of both components, resulting in an image with both local and global effects. (The images show indirect illumination only.)

Figure 6: Local lights only. We observe that when only local lights
are used, fine shadows may disappear (e.g., there are no shadows
behind the bottles).

can be used together, if the difference between the ranks of the
visibility and shading matrices is low. In such a setup the visibil-
ity clusters are used as an initial clustering for MRCS, which can
then further refine them into the desired number of shading clus-
ters. However, we do not use this approach, because it brings al-
most negligible speedup when the method is paired with local light
rendering, since local light generation and rendering accounts for a
large (approximately 50%) fraction of total rendering time.

The sparse high-rank component of the transport matrix is handled
by the newly proposed local light algorithm. While this algorithm
excels in capturing local glossy interactions, Figure 6 shows the
limitations of the method as a stand-alone solution. Due to the local
visibility approximation, all shadows smaller than the tile size are
effectively smeared away (compare with Figure 4).

While global methods lack local glossy effects and local lights lack
fine shadows, combining both we achieve the desired high quality
images. Figure 4 shows a typical glossy scene (Kitchen 1) sepa-
rated into its global and local components. Global lights provide
the basic illumination and shadows, but the far wall appears to be
diffuse. Local lights correct this incorrect perception of material
properties by providing glossy reflections of the paper towels and
faucet, and of course all the other missing local interactions. These
two components are combined for the final result image. Note that
all three images show indirect illumination only.

Figure 7 shows the Kitchen 1 scene (253,433 triangles) rendered
using our method, path tracing, and VSLs for comparison. We also
show insets of areas where our technique is able to accurately com-
pute reflections that contribute to material perception (where VSLs

miss those features). In fact, VSLs give results similar to the solu-
tion using only global lights in Figure 4. The VSL approach misses
reflections of the towel rack, faucet, and the yellow plates on the
back wall, the bar stool rods on the base of the stools, and other
reflections on the counter. The two color-coded error images show
that the overall light distribution of our method matches the refer-
ence more closely. However, we can notice that the illumination at
the right side of the glossy wall is not perfectly even. This is result
of slight noise in connection strategy for local lights.

Figure 8 shows the Tableau, Disney, Kitchen 2 scenes
from [Hašan et al. 2009]. Note that we have increased the gloss
of the floor in Tableau (compared to the original paper) to demon-
strate our ability to render high gloss accurately. We also provide
comparison with Progressive Photon Mapping [Hachisuka et al.
2008] and Stochastic Progressive Photon Mapping [Hachisuka and
Jensen 2009] as suplementary material.

In Tableau, our technique is able to capture both the long-range
and local reflections when compared to VSLs. In fact, the VSL
reflections are quite blurry, and can cause incorrect material per-
ception [Ramanarayanan et al. 2007; Křivánek et al. 2010]. In
comparison with the path tracer, our solution in this difficult scene
is quite accurate. In Disney our algorithm is able to capture the
two blue caustics (see insets) and the shape of highlights accurately
when compared with the VSL approach. In Kitchen 2 our tech-
nique accurately computes reflections of the cupboards in the back.
However, while it captures reflection of the pot in the front, this re-
flection is darker. Similar darkening is also perceivable in Disney
on the left wall. Both are caused by application of slight clamping
on local light contribution.

Table 1 gives a detailed breakdown of individual stages of our al-
gorithm. To fully utilize the computing power, we run the local
light generation on the CPU concurrently with the global and local
light rendering on the GPU. The local rendering time therefore also
includes the time required to finish local light generation.

Kitchen 1 Tableau Disney Kitchen 2
# global lights 300k 200k 200k 100k
# vis. clusters 10k 5k 15k 10k
# local lights 17.1M 55.6M 13.5M 25.1M
Row render 18.6 s 22.6 s 11.3 s 15.4 s
Vis. clustering 19.0 s 13.0 s 28.6 s 12.5 s
Global render 249.6 s 145.6 s 90.8 s 170.5 s
Local render 40.6 s 162.1 s 33.0 s 57.5 s
Total 327.8 s 343.3 s 163.7 s 255.9 s

Table 1: Number of lights and visibility clusters (top) and break-
down of the time spent on different parts of the algorithm (bottom).
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Figure 7: Kitchen 1. Top-right: Our approach (5 min 28 sec). Top-middle: Reference path traced solution (still noisy, 106 hours). Top-right:
Virtual Spherical Lights (VSLs), after 6 min 25 sec. Insets in the bottom row show some of the glossy interactions captured by our method that
are missing from the VSL rendering. Bottom-right: Color-coded relative error images of our method and VSL against the reference solution.

Antialiasing. Our interleaved antialiasing scheme enables the effi-
cient computation of antialiased images with less than a 2× cost in
performance. For example, for Kitchen 1, the regular image takes
approximately 130 seconds, while the 3×3 anti-aliased image takes
approximately 330 seconds to compute. All results presented are
for antialiased images.

8 Conclusion
We present a component-based rendering algorithm for rendering
of highly glossy materials with global illumination. Our approach
is to split the light transport into two parts: a global, low-rank com-
ponent, and a sparse, localized, high-rank component. We approxi-
mate the low-rank component using a novel visibility clustering al-
gorithm, and the high-rank component by using local virtual lights
to compensate for lost energy due to clamping. Our solution is suit-
able for previewing in industrial design applications where materi-
als like metals and plastics are common and should be reproduced
with high fidelity.

Limitations and Future Work. While this approach expands
the range of materials that can be rendered accurately, it has a few
limitations. Local VPLs still need clamping when there are highly
glossy or close-range interactions. Fine shadows can be dulled
due to the visibility approximation in the local lights component.
The number of local VPLs required is highly scene dependent; a
progressive algorithm could be designed for the local component.
Future work could explore automated selection of parameters and
clamping. Clustering and virtual light tracing is currently done on
the CPU; a full GPU solution could increase performance.
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